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Abstract—In real-world Industrial Internet of Things (IIoT)
scenarios, due to the limited storage capacity of IloT devices,
fresh data continuously received by diverse devices will overwrite
the outdated data and change the local data distribution. How-
ever, state-of-the-art studies have demonstrated that Federated
Learning (FL) tends to focus on training with fresh data, and the
latest global model may forget the historical update directions
(i.e., catastrophic forgetting). This issue can significantly degrade
the global model accuracy. Existing methods primarily focus
on integrating outdated data characteristics into fresh data but
overlook the large parameter update gap between global and local
models during global aggregation. This gap can cause the global
model updates to deviate from the optimal direction. To this end,
we propose a federated adaptive weighted aggregation method
based on model consistency (FedAWAC). Specifically, FedAWAC
measures the model consistency on devices and dynamically
adjusts the aggregation weights of each local model, thereby
guiding the global model toward optimal updates. Furthermore,
FedAWAC integrates M historical global models most correlated
to the latest global model on the cloud server to overcome
catastrophic forgetting. Experiments on 4 different datasets (Non-
IID settings) indicate that compared to 5 baselines, Fed AWAC can
improve global model accuracy by an average of 1.86%, reduce
the forgetting rate by an average of 3.93%, and save average
memory usage by up to 2.57GB.

Index Terms—Federated learning, industrial internet of things,
catastrophic forgetting, global aggregation

I. INTRODUCTION

To provide Artificial Intelligence (Al) services and applica-
tions in the Industrial Internet of Things (IIoT) [1], Machine
Learning (ML) [2, 3] and Deep Neural Networks (DNNs)
[4, 5] are widely used to train deep learning models. As
depicted in Challenge 1 in Fig. 1, in real-world IIoT scenarios,
IIoT devices come in many types and have limited storage ca-
pacity. Moreover, IIoT data (e.g., images and text) is typically
Non-IID (non-identically and independently distributed [8])
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Fig. 1. Two challenges in handling the catastrophic forgetting for FL-IIoT.

and decentralized (i.e., distributed across numerous devices
[6]). This creates high communication burdens and privacy
concerns for centralized ML. Federated Learning (FL) can
coordinate numerous IIoT devices to cooperatively train high-
quality Al models without sharing the raw data (FL-IIoT) [7],
which becomes a promising way to train Al models in IIoT.

However, as FL training goes on, IIoT devices continuously
receive fresh data for a new given task, which potentially
changes the local data distributions on devices. State-of-the-
art studies have demonstrated that FL tends to use fresh
data for training and the latest global model may forget the
historical update directions (i.e., catastrophic forgetting) [9].
As depicted in Challenge 2 in Fig. 1, there are significant
differences in data distribution across IIoT devices in each
training round. Consequently, the update directions of the
selected local models in each round may differ significantly
from its historical update directions (i.e., local forgetting) [10].
However, the global model only aggregates the local model
updates from the current training round, which may cause the
global model to forget the update directions from historical
rounds (i.e., global forgetting) [11]. As the global model
updates, catastrophic forgetting will significantly degrade the
global model accuracy. Therefore, to improve model accuracy
in FL-IIoT with heterogeneous data distributions, IIoT devices
should try to minimize the deviation of local model updates
from the optimal direction caused by catastrophic forgetting,
while continuously receiving fresh data and new given tasks.

Existing methods focus on integrating outdated data char-



TABLE I
COMPARISON BETWEEN RELATED WORKS

Focus Methods Optimization ideas  IIoT scenarios
Wang [18] Re-weighting strategy X
Data Heterogeneity Zhang [19] Fine-tuning parameters v
FedNova [21] Normalized average v
FedDC [22] Corrected local update x
Scaffold [23] X
GEM [27] Gradient memory x
GradMA [28] X
Local update FedCurv [13] 4
Penalty term
FedCL [14] v
LwF [15] v
FedProx [20] Regularization term v
Kirkpatrick [26] X
FedGA [42] Gradient alignment v
FedSelT [31] X
Wu [32] Knowledge distillation X
Wang [34] 4
Global aggregation iCaRL [17] Incremental learning X
FCIL [33] v
Generative-Replay [16] v
Rebufi [17] Memory-replay strategy /
FedCM [25] v

acteristics into fresh data during local training to overcome
catastrophic forgetting [12]. Replay-based methods, such as
FedCM [25], construct storage areas to retain outdated data
or historical gradients to retrain the network, but they require
significant storage overhead. Additionally, these works (e.g.,
FedCurv [13], FedCL [14], LwF [15], etc.) avoid a large
update gap to parameters that are significantly associated with
the global model by adding penalty or regularization terms.
For instance, to reduce model inconsistency, FedProx [20]
introduces a regularization term by utilizing local information
aggregation to constrain local objectives. Inspired by short-
term memory generation in the brain, Generative-Replay em-
ploys a dual-model structure based on deep generative models
and task-solving models [16]. Rebufi et al. use short-term
and long-term memory to handle recent and all old data
[17], respectively. However, the above methods can solve
local forgetting, but they overlook global forgetting during
global aggregation. If the update direction of the aggregated
global model significantly deviates from the historical update
direction, this update direction may deviate from the optimal
direction and degrade model accuracy. As the final step of
FL, global aggregation determines the accuracy of the global
model. To our knowledge, we found that overcoming catas-
trophic forgetting during global aggregation to improve the
global model accuracy is still a gap that needs to be filled.

Given the state-of-the-art studies and motivated by these is-
sues above, we aim to effectively suppress global model update
deviation caused by catastrophic forgetting during the global
aggregation in an adaptive manner, thereby ensuring faster
convergence speed and higher model accuracy on both old
and new tasks. To this end, we propose a Federated Adaptive
Weighted Aggregation method based on model Consistency
(FedAWAC). Briefly, FedAWAC can dynamically adjust the
aggregation weights of each device and effectively overcome
catastrophic forgetting during global aggregation.

The contributions of our paper are depicted as follows.

o IIoT device side. A model consistency evaluation mech-
anism is designed to measure model consistency and
dynamically adjust the aggregation weight of each device,
thereby guiding the global model to update in the optimal
direction. When the classifier dimensions of devices are
the same, this mechanism is compatible with various FL
methods, including heterogeneous models.

o Cloud server side. To incorporate historical update di-
rections into global aggregation, we construct a historical
model-assisted global aggregation mechanism by utilizing
a sliding window to integrate M historical global models
that are most correlated to the latest global model.

o Effectiveness. Experiments on 4 different datasets
demonstrate that compared to 5 baselines, FedAWAC can
improve global model accuracy by an average of 1.86%,
reduce the forgetting rate by an average of 3.93%, and
save average memory usage by up to 2.57GB.

The remainder of this paper is organized as follows. Section

IT presents the related work. The proposed system model is
shown in Section III. The design details of FedAWAC are
discussed in Section IV. The experiments and analysis are
given in Section V. Finally, we conclude with Section VI.

II. RELATED WORK
A. Data Heterogeneity in FL-IloT

Data heterogeneity is one of the objective realities that FL
must face in IIoT. When training models using data with
highly skewed label distributions, the model’s prediction accu-
racy across different categories varies significantly, potentially
leading to overfitting and poor accuracy. Wang et al. design a
ratio loss based on a re-weighting strategy [18], redistributing
variable weights for each category to mitigate the adverse
effects of data heterogeneity by focusing on minority classes.
For label distribution imbalance based on quantity, Zhang et
al. fine-tuned hyperparameters [19], sacrificing time costs for
considerable performance gains. Moreover, data heterogeneity
can lead to accuracy discrepancies between different local
models, a phenomenon known as model inconsistency. Ad-
ditionally, FedNova (normalized averaging) proposes adaptive
adjustments to the frequency of local updates to eliminate
inconsistencies [21], but it overlooks the impact of local
imbalanced data on accuracy across different categories.

B. Catastrophic Forgetting During Local Update

When there are significant differences in the update direc-
tions among local models, the update direction of the global
model may deviate from the optimal direction after global
aggregation, thereby reducing the accuracy and convergence
speed of the global model. Inspired by the EWC (elastic
weight consolidation) algorithm, FedCurv avoids large pa-
rameter update differences associated with the global model
through a penalty term [13]. LwF (learning without forgetting)
mitigates catastrophic forgetting by feeding the training data of
the new task into the outdated network and using its output as
synthetic data labels while optimizing both synthetic and real
data training [15]. To accelerate the convergence of the global
model, FedDC (local drift decoupling and correction) [22]
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Fig. 2. The overview of FedAWAC. @ Global model delivery. @ Local update.
® Model consistency evaluation. @ Upload parameters. ® Global aggregation
and global model integration.

and Scaffold (stochastic controlled averaging) [23] correct the
update direction of the local models using control variables.
Additionally, Kirkpatrick adds a regularization term to the
local optimization objective to constrain drastic changes in
important model parameters [26]. Inspired by GEM (gradi-
ent episodic memory) [27], GradMA (gradient-memory-based
accelerated federated learning) restricts the direction of local
gradient updates using historical local models and global
gradients [28]. To address catastrophic forgetting caused by
class imbalance and class absence, FedGA uses a GA (gradi-
ent alignment)-based approach to implement label calibration
during the model backpropagation [42]. Although the methods
above can limit the differences in updates between local mod-
els to a certain extent, they overlook the fact that catastrophic
forgetting can also occur during global aggregation.

C. Catastrophic Forgetting During Global Aggregation

As the local data distribution on IIoT devices continuously
changes over time, in edge scenarios with varying tasks, it
becomes challenging for the global model to quickly adapt
to the received fresh data distribution while maintaining high
accuracy on outdated data [24]. Knowledge distillation meth-
ods [29, 30] can train a teacher model using outdated data
and use the teacher model as a guideline for training the
student model. For example, FedSelT selectively combines
local model parameters and task information [31], which can
also be applied to natural language processing. Wu et al. used
proxy datasets for training [32], and although this method no
longer requires a teacher model, it requires access to private
datasets, without considering data privacy protection issues.
In federated incremental learning, FCIL (federated class-
incremental learning) allows edge devices to add new category
data continuously [33], and during the local training, FCIL
effectively balances the learning weights of fresh and outdated
categories. However, FCIL strictly requires task data to be
orthogonal in each round, so it only applies to certain extreme
scenarios and has poor generalization. To measure the impact
of fresh and outdated categories on model accuracy, Wang et

al. reduce the imbalance between both categories by aligning
the model’s Logits outputs on both [34]. Moreover, Rebufi et
al. propose iCaRL (incremental classifier and representation
learning) to select exemplars for each class based on feature
space [17], but iCaRL has a high computational cost for
network parameters and relies on stored samples, making it
less feasible. However, the methods above require significant
storage and computational overhead, which IIoT devices (with
limited storage and computing capacity) are unable to provide.
Therefore, effectively mitigating catastrophic forgetting during
global aggregation while improving global model accuracy
still remains a major challenge in FL-IIoT.

III. SYSTEM MODEL

As shown in Fig. 2, our system model consists of N IIoT
devices and a cloud server for training image classification
models. We assume that all IIoT devices are in the same
network with good channel quality (both uplink and downlink)
and that all devices remain online throughout the FL training
without dropping out. To protect data privacy, only the cloud
server has access to an unlabeled public dataset P, and the
categories in dataset P are the same as in the local datasets.
At the beginning of each training round, the cloud server
randomly selects a subset of IloT devices S, containing K
devices. Each IIoT device ¢, € S* has a private local dataset
Dy, which contains C' types of samples, and each sample
is represented as x € R? with a corresponding label y. All
IIoT devices are initialized with a global model w°. In the
t-th training round, device cj, receives the latest global model
from the cloud server, the updated local model parameters of
device ¢y, are denoted as w, and the aggregated global model
parameters are denoted as w’. Each IIoT device optimizes its
local model based on the global model parameters, and the
optimization objective is given by

Lz, (1

where L is the composite loss function. The IIoT device ¢
outputs the Logits vector s(w}, z) for the sample = under the
model parameters w},, which is denoted as

zox) ER*C(2)

wy, = argminE, ) p, [L(w; w"™

S(U}Z,Z') = ZE = [Zl,kHZZ,k) "'7zi,k7 LD

where z; j, is the Logits output of class i for device ci. Then,
the classification probability vector p is obtained through the
Softmax function, which is denoted as

p= [pl,k:apQ,kn'“7pi,]€7"‘>pc,k}- (3)

At the beginning of the ¢-th training round, the FL system
randomly selects |S?| = K TIoT devices to participate in FL.
The global model needs to satisfy the optimization objective:

apF(w 4)
Z

where w is the global model parameters, oy, is the aggregation
weight of the local model on IIoT device ¢y, and Fj(w) is the
objective for local updates on device ci. Fj(w) is defined as

min f(w
weR4

(w) ‘,Dk‘Zﬁhkwx v), (5)



TABLE II
LI1ST OF MAIN SYMBOLIC PARAMETERS

Symbols Descriptions

Dimensions of target models

Samples in the dataset D

True label corresponding to sample x

Local update epoch

Learning rate of target models

Total number of IIoT devices in subset S*
Total number of IIoT devices in FL training
Total number of sample categories

Total training rounds in FL training
Mini-batch size in local training

Public dataset

The k-th IIoT device

Aggregated global model in ¢-th training round
Local model of device ¢ in t-th training round
Logits output of sample x for the i-th class
Logits output of sample x for the target class

P HESSNWmNAZRS v < s o

w' Integrated Global model in ¢-th training round

ol Model consistency of device ¢, in ¢-th training round
aj, Aggregate weights of device ¢, in ¢-th training round
s() Logits output vector of the model

M Sliding window size

St A randomly selected subset of /V in t¢-th training round
Dy, Local dataset of device ¢,

where hy, is the local model representation. The optimization
of the IloT device cj is conducted by minimizing (5). Then,
the cloud server receives and aggregates the local model
parameters w!, to update the global model w’.

However, when the local data is highly heterogeneous, there
is an inconsistency between global and local models on IIoT
devices. The traditional average aggregation loses important
knowledge from the local models and fails to preserve his-
torical models. This leads to a significant degradation in the
accuracy of the updated global model on certain data distribu-
tions. To address this issue, we design an adaptive weighted
model aggregation mechanism based on model consistency.

IV. ADAPTIVE WEIGHTED AGGREGATION AND
HISTORICAL MODEL INTEGRATION

A. Model Consistency Evaluation Mechanism

In FL-IIoT, models are trained on heterogeneous data
distributions, where some local models may exhibit higher
prediction accuracy compared to other devices. To improve the
accuracy of IloT devices, we need to amplify the consensus
(i.e., the consistency of model predictions on the same data,
which is called model consistency in this section) reached by
the local models. On the other hand, even if some IIoT devices
do not have high prediction accuracy for certain data samples,
their uploaded gradients may still carry useful model update
parameters. Therefore, we set different aggregation weights
for IIoT devices by measuring the model consistency.

First, the local models of IIoT devices are trained based on
the local datasets. To guide the gradients of IIoT devices to
update in the optimal direction, inspired by FedProx [20], we
add a regularization term to the local loss, which is given by

5
min Fi(w) + §Hwt*1 - wiHQ (6)

Then, we measure the model consistency by evaluating the
variance of the model output Logits vector s(w},z) and x €
P, which is denoted as

oy (wi, ©) = Var(s(w, ), @)
where Var(-) is the variance of s(w},, x). A higher o}, (w},, x)
indicates that IIoT device ¢ has higher confidence in predict-
ing sample x. Compared to devices with lower variance Logits,
if an IToT device has a higher o} (w},, z), it should be assigned
a higher aggregation weight. Therefore, we set a confidence-
based weighted average according to the distribution of Logits
for sample x € P, and the global model is denoted as

v = > aj(z)wf, @®)

where the aggregation weight coefficient o (z) is given by

o, (z) = of(w, x)/ Z 7}, (W, 7). )

keSt

By measuring the consistency of the model Logits, we can
effectively filter out anomalous models, which can help the
global model aggregation reach a consensus faster.

B. Historical Model-Assisted Global Aggregation Mechanism

In each training round, the global model only aggregates the
gradients uploaded by the selected IIoT devices, which ignores
the parameters of the historical global model. To overcome
the catastrophic forgetting of the global model, we integrate
M historical global models to provide more comprehensive
global aggregation information while maintaining the global
model’s performance on outdated data. To determine the
correlation between the number of historical global models
M and catastrophic forgetting, relevant experimental analyses
will be discussed in Section V-B. We give Definition 1.

Definition 1 (Global Distribution Generalization Bound).
For N IloT devices in federated learning and one central
server, let D define the global model test data distribution,
and Dy,q and f)t,«g represent the true data distribution and
empirical data distribution, respectively. For device cy, let
hy = argmin Lp,  (h) and hy, = argmin/lﬁw(h), with
aggregalion weights a}? k € St. The global model aggregation
is Zk Lakh Birg y > ke o = 1. With a sampling probability
of at least 1 — 6 the classification boundary is given by

Zo‘k Diry) S

Zﬁf)tw (hp,.,)
1 t
+5 Z ot d(Dy, D)

e—1
+\/log Z Tk
K
—|—Za2uk,
k=1

(10)



where vy, = argmin Lp, (h)+ Lp(h), [Dils is the mini-batch
samples, and d(Dy, D) calculates the difference between the
data distributions.

According to (9), the global model aggregation in the ¢-th

training round is given by
K] &= T s oh(wh2)

According to Definition 1, the classification accuracy of
the aggregated global model depends on /) the size of the
training dataset, 2) the accuracy of the local model, and 3) the
differences between local and global data distribution. Through
model consistency evaluation, we assign lower aggregation
weights to IIoT devices with poor local model accuracy or
extreme local data distributions that are significantly different
from the global data distribution.

In (¢ + 1)-th training round, device ¢ receives the latest
global model and performs mini-batch Stochastic Gradient
Descent (SGD) on the local dataset Dj. The local model
update for device cj, is given by

r—1
t,r t,0 n

w, = w, —
b b |[Dils] £

B
> VI D),

12)

where [Dy]p is the b-th mini-batch of data randomly sampled
from Dy, and r is the number of local updates epochs.

To retain important historical update parameters that impact
catastrophic forgetting, we construct a sliding window to inte-
grate M historical global models that are strongly correlated
with w! into w!, which is given by

M
1
=t E t—m—+1 +

m=1

Using the integrated w' as the latest global model w? + w®
to guide the local model w! " for the next training round can
prevent the local gradient update from deviating from the op-
timal direction. Although a random sample of all IIoT devices
is synthesized each round to form a subset, the information on
historical global model parameters is still contained in w’. The
integrated model helps different devices reach a consensus on
data representation while retaining important historical global
update parameters. We will prove the effectiveness and range
of the positive integer M in Section IV-C (Theorem 4).

C. Convergence and Effectiveness Analysis

To prove the convergence of the FedAWAC, we need to
demonstrate that during FL training, after 7' training rounds,
the loss function of the global model will gradually de-
crease and eventually converge to the optimal solution. For
the convergence analysis, we must rely on some common
assumptions, we give Assumptions 1, 2, 3 and Theorems
1, 2. To prove that FedAWAC can minimize the variance of
global model aggregation updates, we give Theorem 3. For
the effectiveness analysis of M, we give Theorem 4.

Assumption 1 (L-Smoothness). Assume that the local loss
function Fy,(w) for each device is L-smooth, which means the
gradient changes of the loss function are bounded.

IVE(w1) = VEg(wo)|| < Lfjwy —wyll,  Vwy,wy.  (14)

Assumption 2 (u-Strong Convexity). Assume that the local
loss function Fy,(w) is u-strongly convex.

Fk(wg) Z Fk(wl) + <VFk(w1),U)2 — U)1>

15)
+ Sl — w2, Y, ws.

Assumption 3 (Randomness). In each training round, the se-
lected devices are chosen randomly, so the probability of each
device being selected is the same. This randomness ensures
that after multiple rounds, all devices’ updates contribute to
the global model.

Theorem 1 (Convergence Guarantee of Local Updates). If
(12) is feasible and Assumptions 1, 2, 3 hold, then after e local
update epochs, the loss function of each device will gradually
converge to the local optimal value Fy(w}).

Proof. As shown in (12), in FedAWAC, each device performs
multiple steps of local SGD. According to the convergence
theory of gradient descent, with Assumptions 1, 2, the local
updates gradually converge to the local optimal solution.
Specifically, for device ¢y, the loss function value Fj(w},) of
the local model w satisfies:

L 2
R < Fulud) - (1= 55 ) IVR@DIE - (6)
where 7 is the learning rate. Based on Assumption 2, we have
IV EFp(wp)[I” > 20 (Fi(w)) — Fr(wy)) (17)

where wj; is the optimal model of device ci. Therefore, the
local update satisfies the following recursive relationship:

Fi(wptt) < Fr(wy)
Y (n - L;) (Fi(w) - Fiw}))

This means that after e local update epochs, the loss function
of each device gradually converges to the local optimal value
Fi(wf). Therefore, Theorem 1 concludes. O

(18)

Theorem 2 (Convergence Guarantee of the Global Model). If
(11) is feasible and Assumptions 1, 2, and 3 hold, then after
T training rounds, the loss function of the global model will
converge to the optimal value F(w*).

Proof. The update of the global model can be denoted as

w' =w'"t —pVF(w'™h), (19)

where VF(w'™1) is the gradient of the global loss function.
Based on (11) and Theorem 1, we can prove that the value of
the global model’s loss function F'(w') decreases monotoni-
cally in each round, which is given by

F(w') < F(w'™!) = VF(w =] (20)



Algorithm 1: FedAWAC
Input: N, T, B, M, r, n
Output: Global model w!
1 Initial global model parameters w
2 Procedure Sever Execution
3 for each training round t € T do
4 Random sample a set of devices St € N

0

5 if £ < M then

6 Send the global model w?~! to the selected
devices

7 else

8 Send integrated history global model @w*~! to
the selected devices

9 end

10 for each device cy in parallel do

1 w!, « ClientUpdate(w'™1, Dy,)

12 U%(wk, x) = Var( s(wp, x))

B aj(z) = of (wy, )/ 32, of (wy,, 7)

14 end

15| w'= & Y of(x)w)

=t _ 1 M t—m+1
16 | 0 =) w

17 end
18 function ClientUpdate(w!™!, Dy,)
19 begin
20 for each local epoch e = 1,...,r do
21 for each batch b € B do
22 wk e
wk Dkb\ Ze o b= 1Vf(wi‘l[Dk] )
23 f = min Fy,(w) + § ||w —wkH2
24 end
25 end
26 return w! back to sever
27 end

Furthermore, based on Assumption 2, we can get

IVE@' ™ H)|? = 2u(F(w'™") = F(w™)). Q1)
Thus, the change in F(w!) satisfies:
F(w') = F(w*) < (1= 2um)(F(w'™") = F(w")). (22)

This means that after 7' rounds of global training, the
global model’s loss function will converge to the optimal value
F(w*) at an exponential rate, which is given by

Fw™) — F(w*) < (1 - 2um)" (F(u°) — F(w")).

Therefore, Theorem 2 concludes. O

(23)

Theorem 3 (Convergence Bound Improvement through Adap-
tive Weighting Based on Consistency). If (9) is feasible and
Assumptions 1, 2 hold, then FedAWAC can minimize the
variance of aggregated updates, yielding a tighter convergence
bound. The convergence of the global model w” after T
training rounds satisfies the bound:

Elf(w") - f(w*)]

T 2t
ot k12, 10k (24
E( k=1 akHw wH +20‘Z>7

where f(w*) is the optimal value of the global objective
function, L is the Lipschitz constant for smoothness, and n
is the learning rate.

Proof. Based on Assumption 1, in the ¢-th training round,

Fr(w?) satisfies:
Fi(w') < Fi(w")
£t |

According to (4), in the t¢-th training round, the global
objective function f(w') with weight o is given by

K
= ajFi(w') (26)
k=1
Substituting (25) into (26), we can get
K
w) < ZaZ(Fk(w
k=1
+ V(w7 (0t — w*) @D
L
+ 2wt - w ).

Based on Assumption 2, in the ¢-th training round, we have
2
O

According to (9), to minimize the variance of aggregated
updates, we ensure that devices with lower variance o}, (w},, z)
contribute more to the global model. Then, we can infer

t * 1
Ft) = flw?) < oIV Flw (28)

t+1 711)*”2 < Hwt —w

K

- QWZ(XZVFk(w*)T(wt —w")

[[w |2

1 29)
K ot
Z Tk
t
=1 %k
Summing (29) over 7' rounds, we can get
T
D E[f(w') = f(w")]
= . (30)
<lz Ezat H ,wt_w* H2+7720-lt€
_thl 2k:1 ’ 200, )

Therefore, Theorem 3 concludes. According to Theorems
1, 2, 3, we have proven the convergence of FedAWAC. [

Theorem 4 (Effectiveness of Sliding Window M). If (13)
is feasible and Assumption 1 holds, then moderate 2 <
M < VT can make the integrated model W' suppress the
fluctuations in global model updates.

Proof. In the t-th training round, based on Assumption 1 and
SGD, we have

F(w') — F(w*) < Tmllwo—w*\l? 31)



TABLE III
DATASETS DETAILS AND HYPERPARAMETER SETTINGS

Datasets CIFAR-10 CIFAR-100 Tiny-ImageNet AG News
Type Image Image Image Text
Model CNN CNN ResNet-18 FastText
Device 10/100 10/100 10/100 10/100
Category 10 100 200 4
Train Size 50,000 50,000 100,000 84000
Test Size 10,000 10,000 10,000 36000
Batch Size 50 50 50 10
Training Round 200 200 200 200
Learning Rate 0.1 0.1 0.1 0.1
According to (13) , we can get
M
—t * 1 t—m—+1 *
Fw') — Flw*) < — (F(w ) — F(w*)). (32)
m=1

Since F'(w!~™*1) is decreasing (i.e., the error of the global
model gradually decreases as training goes on), we have

M
Z F(wt—m—i-l) < F(wt_M+l).

m=1

1

F(ao') < i (33)

Thus, the error of the integrated model w! will not be larger
than the worst error within the most recent M rounds. As
training goes on, if too many historical global models are
integrated, it can slow the convergence of the global model
while imposing substantial computational costs. This indicates
that when 2 < M < VT is moderate, the integrated model
w? can effectively suppress the fluctuations in global model
updates. Theorem 4 concludes. O

D. Complexity Analysis of FedAWAC

The computational complexity of FedAWAC mainly comes
from the local training on the device and the global aggregation
on the server. 1) Gradient computation. Each client computes
the gradient on its local dataset Dj. Assuming the dimension
of the model parameters is d, the complexity of calculating
the gradient for each batch is O(dB). 2) Local update epoch.
In each communication round, clients perform r local epochs
of updates, and each epoch requires gradient computation
for all batches. Assuming each batch contains B samples,
the computational complexity of the entire local training is
O(r - B - d). Therefore, the computational complexity for
each client is O(r - B - d). 3) Server-side. The cloud server’s
computation mainly involves the weighted aggregation of the
global model. Specifically, after receiving the updated models
from the clients, the server computes the weighted average.
Assuming K clients are selected, and each client model has
d parameters, the complexity of the server-side aggregation
operation is O(K -d). Additionally, the Fed AWAC introduces a
sliding window ensemble operation, where the server averages
the models from the past M rounds. The complexity of this
operation is O(M -d). Therefore, the total computational com-
plexity on the server side is O(K-d+M-d) = O((K+M)-d).

E. Algorithm Design

FedAWAC can be divided into the following two key stages.

1) Model consistency evaluation. During the local training,
as shown in step @ in Fig. 2, IIoT devices perform multiple
rounds of SGD on their local heterogeneous datasets to obtain
local updates. Subsequently, the devices output the Logits
vector for unlabeled samples x € P and compute the variance
of the vector ol (wk,z) as the model consistency (step ®).
A higher value of o} (w},x) indicates that the device ¢, has
a higher confidence in its prediction for sample x. Based on
ol (wh, x), the influence of the local models’ consensus on the
data prediction is assessed, and the aggregation weight o} ()
is assigned to each device.

2) Historical model-assisted global aggregation. During the
global model aggregation, the cloud server aggregates the local
models participating in the current training round based on the
aggregation weights o (z) (step @), effectively reducing the
negative impact of more anomalous local models. By utilizing
a sliding window, M historical global models are integrated
to obtain w® (step ®). This @' can replace the updated global
model and is sent to the devices participating in the next
training round for local training (step @).

The design details of FedAWAC are presented in Algorithm
1. Judge the training rounds (lines 4-8). Calculate the variance
of the Logits vector output from the local model and measure
the model consistency (lines 9-11). Assign aggregate weights
to IIoT devices (line 12). Global model aggregation (line 13).
Historical global model integration (line 14). Update the local
model with the local dataset (lines 15-20).

V. PERFORMANCE EVALUATION
A. Experimental Settings

Experimental Environment. All experiments in this sec-
tion are conducted on a server equipped with 2 NVIDIA A100
GPUs with 80GB memory and 256GB RAM, running the
Ubuntu 20.04 operating system, powered by a 64-core Intel(R)
Xeon(R) Gold 6326 CPU @ 2.90GHz, and utilizing a CUDA
11.8 computing platform with the PyTorch 1.8 framework.

Non-IID Datasets and Target Models. We choose three
image datasets (CIFAR-10/100 and Tiny-ImageNet) and one
text dataset (AG News) and train three models (CNN and
RestNet-18 for image classification tasks, FastText for text
classification tasks). To simulate the real heterogeneous en-
vironment in IoT, we utilize the Dirichlet function Dir(«)
to partition the datasets (i.e., reallocating the proportion of
class C' samples assigned to each device) to generate Non-
IID datasets [36, 37]. The smaller the parameter «, the
more different the distribution of training datasets allocated to
devices. The details of the datasets and models are as follows.

e CIFAR-10 and CIFAR-100 datasets comprise images of 10
and 100 categories [38], respectively, with a fixed size of
32 x 32 pixels in color. We train a Convolutional Neural
Network (CNN) model to classify images, which consists
of 2 convolutional layers (5 x 5, each activated by ReLLU
and followed by 2 x 2 max pooling), 2 fully connected
layers, and Softmax normalizes the final output.



TABLE IV
GLOBAL MODEL ACCURACY Accg OF FEDAWAC WITH DIFFERENT
SLIDING WINDOWS M (%)

Sliding CIFAR-10 CIFAR-100
windows Dir(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1)

M =3 41.89 68.75 75.89 30.27 31.90 39.45

M=5 43.65 69.82 74.49 31.26 32.73 40.10

M=T 42.97 68.02 74.51 31.08 32.12 39.82

M=9 41.64 66.79 73.10 29.65 30.89 38.97
TABLE V

FORGETTING RATE F OF FEDAWAC WITH DIFFERENT SLIDING
WINDOWS M (%)

Sliding CIFAR-10 CIFAR-100
windows Dir(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1)

M=3 54.10 20.62 19.10 42.68 28.46 24.17
M=5 47.30 19.15 17.20 38.24 27.29 24.29
M=T 50.71 21.36 18.49 40.29 30.71 28.13
M=9 51.79 23.78 18.20 42.10 34.16 30.56

o Tiny-ImageNet dataset consists of 200 categories with ap-
proximately 120, 000 samples [39], where each class con-
tains 500 training images, 50 validation images, and 50
test images, with each image sized at 64 x 64. Compared
to the CIFAR-10/100 datasets, the Tiny-ImageNet dataset
has greater complexity in terms of image categories and
RGB channels. Therefore, we train a ResNet-18 model
to classify images, which incorporates residual structures
and consists of 18 layers (including convolutional layers,
normalization layers, and fully connected layers).

e AG News dataset consists of article titles and descriptions,
comprising 4 categories with 127,600 samples [40]. It is
one of the commonly used datasets for text classification
tasks. Given that the FastText structure is simple and
parallelization-friendly, making it suitable for resource-
constrained IIoT devices, we train a FastText model to
classify text (including an input layer, a fully connected
hidden layer, and a fully connected output layer).

Baselines. Five comparative methods are as follows.

o FedAvg [41], the most classic and popular baseline, uses
the empirical loss of randomly selected devices’ training
data as the optimization objective and updates the global
model by averaging the selected local model parameters.

e FedCurv adds penalty terms to the local model based
on the EWC algorithm to mitigate catastrophic forgetting
under heterogeneous data [13]. The weight of the penalty
term is determined by the Fisher information matrix.

o FedProx adds a regularization term to the local loss func-
tion to control gradient drift by limiting the Euclidean
distance between the local and global models [20].

o FedCM aggregates the global gradient from the previous
training round and uses a momentum term to adjust the
local gradient toward the global gradient [25].

o FedGA [42], the state-of-the-art method to mitigate local
forgetting, reduces forgetting of minority and unseen
classes during local updates through label calibration.

Hyperparameter Settings. The total number of IIoT de-
vices N = 100 and K = 10 devices are randomly selected in

each training round. To ensure the fairness of our experiments,
we adopt the same settings as FedCM [25]. The momentum
coefficient is 0.9, the learning rate scheduler has a decay factor
of 0.99, and the number of local training epochs r = 5. Other
parameters follow common settings used in image and text
classification tasks, with details provided in Table III.
Metrics. Three evaluation criteria are depicted as follows.

e Global model accuracy Accy. We use the global model
accuracy Accy as a metric for evaluating the global
model’s performance. The higher the Acc, the better the
model training performance of the method.

e Forgetting rate F. Similar to [43], we use F as the
catastrophic forgetting evaluation metric for heteroge-
neous data and F represents the average gap between
the maximum accuracy and the final accuracy for each
class at the end of FL, which is given by

C
1
== Acct — Accl 34
T2 0 2 cn iy e~ Aect). G0

where Accl, is the accuracy of class ¢ at t-th training
round. A smaller F indicates that the model forgets less
about tasks on different data and the method is better at
overcoming catastrophic forgetting.

e Memory usage m,. The memory usage of the model
during training is employed as an evaluation metric.
The smaller the memory usage m,,, the fewer memory
resources are consumed during the model training.

B. Selection of Sliding Window M

In FedAWAC, a larger M may include unstable parameters,
potentially reducing the accuracy of the global model while a
smaller M cannot overcome catastrophic forgetting. To select
a reasonable M for contrast experiments, this section dis-
cusses the hyperparameter performance of FedAWAC on the
CIFAR-10/100 datasets under different levels of heterogeneity
a = {0.05,0.5,1} from the perspectives of Accy and F.

To increase training instability and better amplify the impact
of M on FedAWAC training performance, we set 7' = 100
and K = 5 for the experiments (with other hyperparameters
unchanged) in this section. By comparing different settings of
M (e.g., 3,5,7,9), the model’s performance on Acc, during
oscillations can be directly observed, enabling the selection
of an appropriate M. Additionally, the training instability
will magnify the catastrophic forgetting phenomenon under
different M settings, allowing for a more intuitive observation
of how the metric F changes with M. This can help us quickly
determine the optimal value of M.

1) Global model accuracy Accg with different M. The Acc,
of FedAWAC with different M on the CIFAR-10 dataset are
reported in columns 2 to 4 of Table IV. When the level of data
heterogeneity o« = 1 and M = 3, the global model achieves
the highest Acc, = 75.89%. As M increases, the Acc, of the
global model gradually declines. Since the CIFAR-10 dataset
is relatively simple and the level of data heterogeneity o = 1
is low, the impact of different M on the forgetting rate is
minimal. As the level of data heterogeneity increases, when



TABLE VI
GLOBAL MODEL ACCURACY Accg OF DIFFERENT TRAINING METHODS (%)

CIFAR-10 CIFAR-100

Tiny-ImageNet AG News

Methods — p0.0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1) “Yerae
FedAvg 35.13 6697  73.25 31.31 37.32  38.62 13.62 16.93  17.70 79.15 83.13 86.97 4834
FedCurv 34.51 67.34  72.82 30.85 3599  39.16 14.26 1797  19.62 78.67 8295 87.01 48.43
FedProx 38.16 63.98  62.65 32.13 32.10 3570 16.73 18.17  21.57 79.08 83.25 87.10 47.55
FedCM 42.19 71.64  74.65 30.43 38.75 4235 15.82 2475  26.25 81.12 84.68 87.55 51.68
FedGA 42.30 6722  74.77 33.74 37.64  39.07 14.65 20.82 2350 81.84 84.77 8797 50.69
FedAWAC (Ours)  45.24 69.82 7449  35.50 39.33  40.10 18.38 2642 2693 81.90 8475 8774 52.55

CIFARAID model accuracy Acc, and forgetting rate F, Table V re-

70% CIFAR-100 ports the forgetting rates F of FedAWAC with different M.

e , Columns 2 to 4 of Table V show the Accy, of CIFAR-10
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35%+ / 33.049 reaching the optimal sliding window setting.
e, K Therefore, considering the objective factors of data het-
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29.94% erogeneity, by balancing the global model accuracy and the
30%4 31 2704\ | A 3126% performance of mitigating catastrophic forgetting as reported
. " 30.19% in this section, we set M = 5 for subsequent experiments.
127.88%
25% T . : T C. Analysis of Global Model Accuracy Acc,
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(b) Average forgetting rate

Fig. 3. The average Accy and F of FedAWAC with variable M (%).

a = {0.05,0.5}, FedAWAC achieves the highest Acc, =
43.65% and 69.82% with M = 5, respectively.

Furthermore, columns 5 and 7 of Table IV report the Acc,
of FedAWAC with different M on the CIFAR-100 dataset.
The experimental results report that when o = {0.05,0.5,1}
and M = 5, the Acc,; of FedAWAC is consistently the
highest. When the level of data heterogeneity is low (o = 1),
FedAWAC achieves the highest accuracy across different «,
demonstrating robustness in selecting M, with the Acc, only
0.65% lower than that of M = 3. Notably, when M = 9,
FedAWAC shows the lowest global model accuracy across all
a on both datasets, where the Accy on the CIFAR-10 dataset
(oo = 0.5) is 3.03% lower than that of M = 5. This is because
if M is large, there are more historical global models being
integrated, and the differences in the global models across
different rounds gradually become large. This can slow the
global model convergence and degrade the model accuracy.

2) Forgetting rate F with different M. To balance global

1) CIFAR-10 dataset. As reported in columns 2 to 4 of
Table VI, when o = 0.5, by utilizing the set of historical
model gradients, FedCM achieves the highest Acc, = 71.64%,
which is 1.82% higher than Fed AWAC, respectively. However,
FedCM needs to record the gradient changes of the local
model in each round, aggregate the average gradient changes
of all devices, and transmit additional momentum terms to
the server, leading to significantly higher computational cost
and communication overhead compared to FedAWAC. When
a = 1, FedGA achieves the highest Acc, = 74.77%.
However, when a = 0.05, FedAWAC achieves the highest
Accg = 45.24%, which is about 10.11% higher than FedAvg.

2) CIFAR-100 dataset. As reported in columns 5 to 7 of
Table VI, the increased complexity of the dataset degrades
model accuracy for all methods. Specifically, when o« = 1,
FedCM achieves the highest Accg, which is 2.25% higher
than FedAWAC. This indicates that when data heterogeneity
is low, the differences in data distribution between devices
are small, and FedAWAC utilizes well-integrated consistency
model representations but demonstrates slightly weaker perfor-
mance compared to FedCM in adjusting local gradient updates.
However, the average Acc, of FedAWAC is significantly
higher than that of FedAvg, FedCurv, FedProx, and FedGA.



TABLE VII
FORGETTING RATE F OF DIFFERENT TRAINING METHODS (%)

CIFAR-10 CIFAR-100

Tiny-ImageNet AG News

Methods — 1i.(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1) Dir(0.05) Dir(0.5) Dir(1) “AYerae
FedAvg 67.10 27.02  20.17 59.15 3290 28.11 76.17 59.72 58.13 58.75 26.11 1551 44.07
FedCurv 62.36 28.09 18.34 57.30 29.75  22.90 75.89 5531  53.95 56.20 26.10 17.16 41.95
FedProx 64.97 26.60 19.20 54.18 31.67 2142 74.22 5875 51.50 53.61 2347 1532 41.24
FedCM 61.92 21.40 16.55 52.17 25.14 18.93 73.60 51.24  49.61 51.44 22.66 1525 38.33
FedGA 62.05 20.32  16.51 51.60 30.55  20.15 73.10 53.13  51.53 50.69 2229 1521 3893
FedAWAC (Ours)  60.03 19.25 17.38 50.35 27.32  18.57 71.41 48.79 48.04 50.51 21.80 1540 37.40
0, . .
100% S Fodve B FodCory a0 D. Analysis of Forgetting Rate F
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0, . .

63.18% (o = 1), FedCM has the lowest F, which is 0.83% lower
$°60% - Y i than FedAWAC. When the data heterogeneity increases to o =
3 -y g y
= \ g 3831% {0.05,0.5}, FedAWAC achieves the lowest F = 60.03% and

N\ . i . o .
40% | {é 19.25%, respectively, significantly lower than other baseline
§ i% § _Z’ 23.91% £ methods. When o = 0.05, FedAWAC outperforms FedAvg,
0% §:Z §:Z , FedCurv, FedProx, FedCM, and FedGA by approximately
- \ = — 7/ .
R —é § :Z N g 7.07%, 2.33%, 4.94%, 1.89%, and 2.02%, respectively.

= Z = :

CIFAR-10  CIFAR-100 Tiny-ImageNet AG News 2) CIFAR-100 dataset. As reported in columns 5 to 7
A ll)abtalsetsdl in Table VII, when o« = 0.5, FedCM achieves the lowest
80% (a) Average global model accuracy F among all methods. This is because FedCM retains the
§Eegsvg%£eggu’\? information on model gradient changes during each round of
edarrox: [ « . . .. . .
B FedGA H[H\\Tped,\w,\c (Ours) local training, which can help mitigate the negative impact
56.08% of data heterogeneity on the global model by improving the
0/ . . . . .

60% ° correction of local model update directions in cases of low
N data heterogeneity. When the data heterogeneity o = 0.05,
the F of FedAWAC is significantly lower than FedCM and

40%1 29.24% FedGA by approximately 1.82% and 1.25%, respectively.
§ N 3) Tiny-ImageNet dataset. As reported in columns 8 to 10
N / § :’5 in Table VII, with the increase in the complexity of sample
20% N = \ categories in the Tiny-ImageNet dataset, the forgetting rate
CIFAR-10  CIFAR-100 Tiny-ImageNet AG News F of FedAWAC with o = 0.5 is also about 2.45% lower

Datasets
(b) Average forgetting rate

Fig. 4. The average Accy and F of six methods (%).

3) Tiny-ImageNet dataset. As reported in columns 8 to 10
of Table VI, FedAWAC achieves the highest Acc, = 18.38%,
26.42%, and 26.93% when o = {0.05,0.5,1}, respec-
tively, significantly outperforming FedAvg, FedCurv, FedProx,
FedCM, and FedGA. FedCM only achieves the scend-highest
Accg = 15.82%,24.75%, and 26.25%, respectively.

4) AG News dataset. As reported in columns 11 to 13 of
Table VI, FedGA achieved the highest accuracy of Accy =
84.77% and 87.97% when o = {0.5, 1}, respectively, which is
only 0.02% and 0.23% higher than FedAWAC. This is because
the AG News dataset contains fewer categories, allowing
FedGA to better align sample labels. However, when the data
is highly heterogeneous (v = 0.05), FedAWAC achieved the
highest accuracy of Acc, = 81.90%, surpassing FedGA’s
81.84%. This indicates that FedAWAC can adapt to datasets
with a higher level of heterogeneity. Therefore, FedAWAC can
maintain good model accuracy on the text dataset (AG News),
while also being applicable to other models.

than that of FedCM, which is a greater reduction than the
1.82% observed on the CIFAR-100 dataset. This indicates
that FedAWAC can better overcome forgetting caused by the
global model on complex datasets. Furthermore, FedAWAC
achieve the lowest F = 71.41%,48.79%, and 48.04% when
a = {0.05,0.5,1}, which is significantly lower than FedGA
by approximately 1.69%,4.34%, and 3.49%, respectively.

4) AG News dataset. As reported in columns 11 to 13
in Table VII, FedGA achieved the lowest F = 15.21%
when o = 1, which is 0.19% lower than FedAWAC. When
a = {0.05,0.5}, FedAWAC obtained the lowest F = 55.51%
and 21.80%, respectively. On the AG News dataset, where the
number of sample categories is relatively small, the gradient
alignment in FedGA helps it retain more features under low
data heterogeneity. However, as data heterogeneity increases,
gradient alignment becomes more challenging, leading to a
higher forgetting rate in FedGA compared to FedAWAC.
FedAWAC effectively reduces the forgetting rate under high
data heterogeneity by integrating M historical global models.

E. Analysis of Memory Usage m,,

Table VIII reports the memory usage m,, of six methods
on 3 datasets (CIFAR-10/100 and Tiny-ImageNet). The m,,



TABLE VIII
MEMORY USAGE m., OF DIFFERENT TRAINING METHODS (GB).

CIFAR-10 CIFAR-100 Tiny-ImageNet

Methods Dir(1) Dir(1) Dir(1) Average
FedAvg 0.75 0.75 8.49 3.33
FedCurv 0.95 2.30 14.69 5.98
FedProx 1.10 1.10 12.70 4.97
FedCM 1.24 1.24 13.55 5.34
FedGA 0.89 0.89 9.24 3.67
Fed AWAC (Ours) 0.85 0.85 8.54 3.41

of the trained model is primarily determined by the model’s
structure and the number of parameters. Since FastText is
the most lightweight model among the three models and
has the fewest parameters, the m,, required to train FastText
with the six methods differs only slightly. Therefore, in this
section, we choose the more complex CNN and ResNet-18
for comparison. The model structures for all methods on the
same dataset are identical, and during the training process,
the parameter matrices or tensors of the models remain fixed,
independent of the feature distribution or label distribution
of the input data (i.e., independent of «). Therefore, in this
section, we set the same data heterogeneity o = 1 for six
methods on three datasets.

1) CIFAR-10/100 datasets. As reported in columns 2 to 3
in Table VIII, FedAvg requires the least amount of memory,
while the proposed FedAWAC is the scend-least. This is
because FedAvg exchanges model parameters with the server
without involving additional weight calculations. FedAWAC
integrates and stores five historical global models, which
occupy 0.1GB more memory than FedAvg. Since the com-
putational complexity of FedAvg, FedProx, FedCM, FedGA,
and FedAWAC is related to the model parameters, and the
models trained on the CIFAR-10/100 datasets have the same
CNN structure, the memory usage for the same method on
both datasets is the same. Since each device in FedCurv
needs to send the diagonal elements of the Fisher matrix to
other devices, FedCurv occupies more memory on the CIFAR-
100 dataset. FedGA dynamically aggregates the global model
based on gradient similarity, which needs to store all devices’
gradients in each round. Therefore, the memory usage of
FedGA is slightly higher than that of Fed AWAC.

2) Tiny-ImageNet dataset. As the number of sample cat-
egories in the Tiny-ImageNet dataset increases, the global
model is a more complex ResNet-18, leading to a significant
increase in memory usage across all five methods. Due to its
simplicity, FedAvg has the lowest memory usage, while the
proposed FedAWAC only requires 50MB more than FedAvg.
However, according to Sections V-C and V-D, FedAWAC
significantly outperforms FedAvg in terms of model accuracy
Accy and forgetting rate F. Due to the increased gradients
of the ResNet-18, the amount of gradient information that
needs to be stored by FedGA significantly increases, leading
to a substantial rise in memory usage. Although FedCurv and
FedGA can mitigate forgetting to some extent, their memory
usage is approximately 1.72 and 1.08 times that of Fed AWAC,
respectively. Experiments demonstrate that FedAWAC can oc-

cupy significantly less memory than other baselines and better
accommodate environments with limited storage capacity.

VI. CONCLUSION

Due to the limited storage capacity of IIoT devices, fresh
data continuously received by diverse devices will overwrite
the outdated data and change the local data distribution in FL-
IIoT. As training goes on, FL tends to train with fresh data
and the latest global model may forget the historical update
direction. Catastrophic forgetting can significantly degrade
the accuracy of the global model. To overcome catastrophic
forgetting during global aggregation, we propose a Federated
Adaptive Weight Aggregation method based on model Consis-
tency (FedAWAC). Specifically, we extract reliable consensus
from the Logits output of unlabeled data on the local model
to measure model consistency and dynamically adjust global
aggregation weights for each device. Meanwhile, a sliding
window integrates M historical global models on the cloud
server side to overcome catastrophic forgetting and ensure
higher global model accuracy on Non-IID data. Experiments
on 4 different datasets show that, compared to 5 baselines,
FedAWAC can improve global model accuracy by an aver-
age of 1.86%, reduce the forgetting rate by an average of
3.93%, and save average memory usage by up to 2.57GB.
Furthermore, when the dimensions of the classifiers for IIoT
devices are the same, FedAWAC is compatible with various
FL training methods and heterogeneous models. These im-
provements indicate that Fed AWAC is a promising approach to
overcome catastrophic forgetting in FL-IIoT. In the future, we
will consider how to overcome catastrophic forgetting through
collaboration between local updates and global aggregation.
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